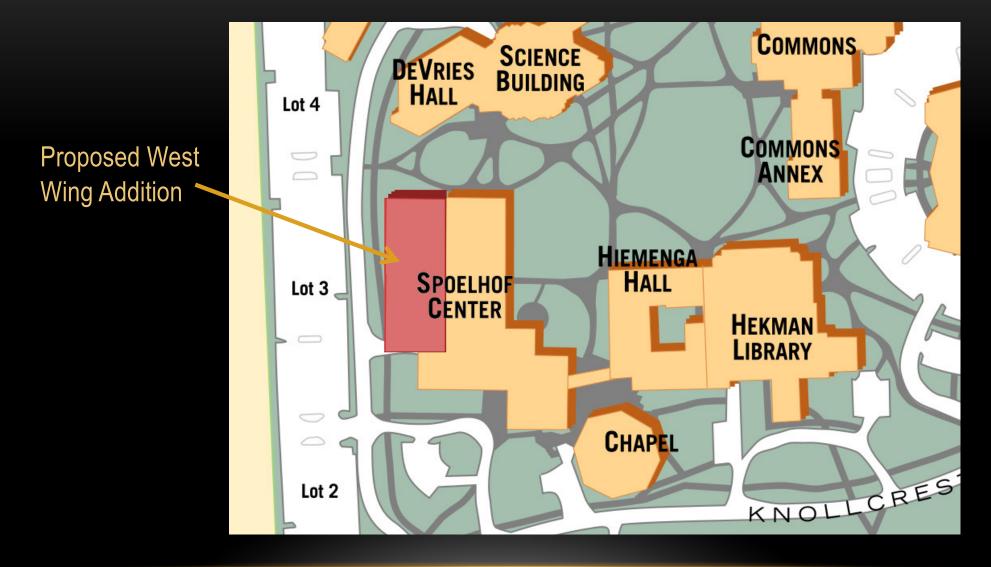
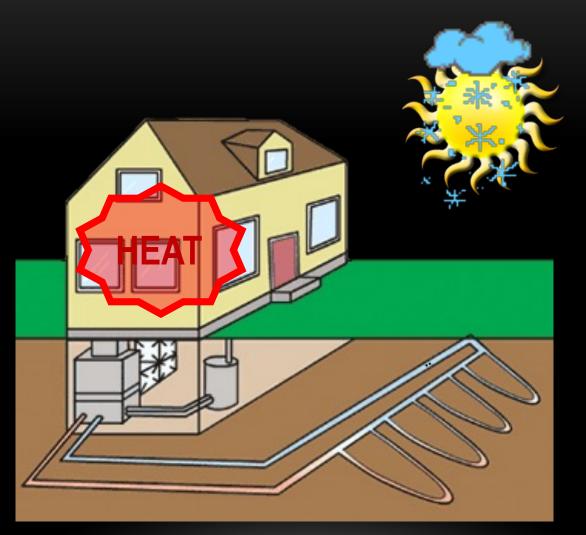
WEST WING GEOTHERMAL PRESENTATION

ENGR 333

DECEMBER 4, 2012


SPOELHOF CENTER WEST WING ADDITION

IntroductionInfrastructureAbove GroundEnergy ModelingBelow Ground


Recommendation Financial

LOCATION

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

HOW DOES GEOTHERMAL WORK?

http://www.drenergysaver.com/renewable-energy/geothermal-heat.html

Introduction

n Infrastructure / Energy Modeling Below Ground

Above Ground low Ground Recommendation Financial

GEOTHERMAL BENEFITS AND COSTS

Benefits

- Reduced energy consumption
- Reduced maintenance

Costs

- More complex
- Installation

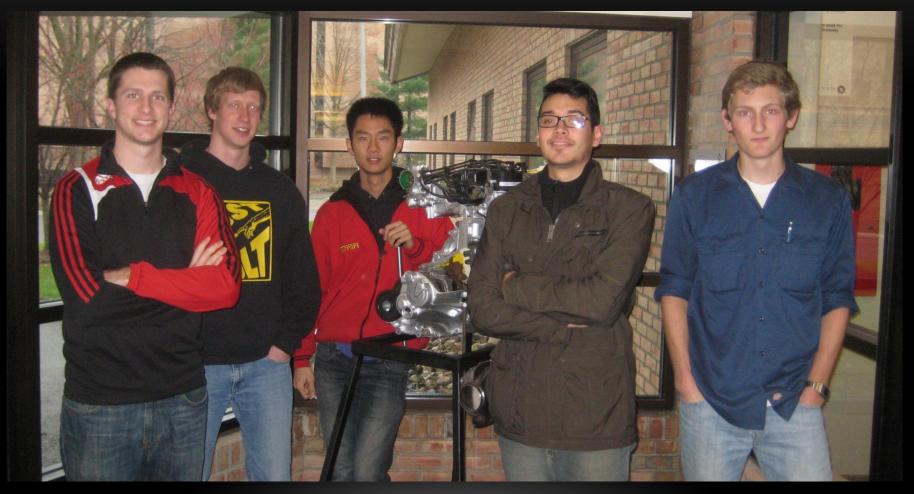
PROJECT OVERVIEW

- Objective:
 - As a class we are to determine what it would take to use a geothermal Heating, Ventilation, and Air Conditioning (HVAC) system in the West Wing Addition
- 5 groups for analysis
 - LEED & Energy Modeling
 - Infrastructure
 - Below Ground
 - Above Ground
 - Financial

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

LEED & ENERGY MODELING

Introduction


Infrastructure

Above Ground

Recommendation Financial

Energy Modeling Below Ground

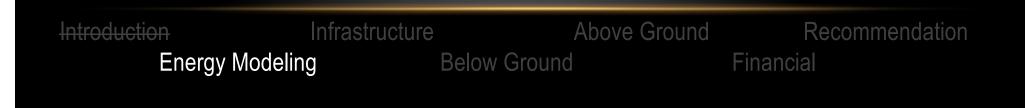
TEAM MEMBERS

Introduction

Energy Modeling

nfrastructure Above Ground Below Ground Recommendation Financial

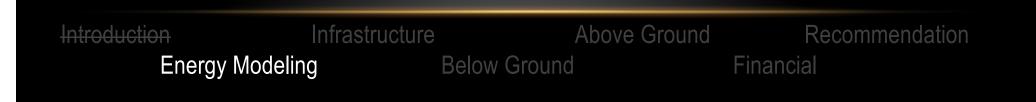
KEY QUESTIONS


- How will a geothermal system contribute to achieving LEED certification?
- What are the heating & cooling loads for the West Wing addition?

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

LEED RATING SYSTEM

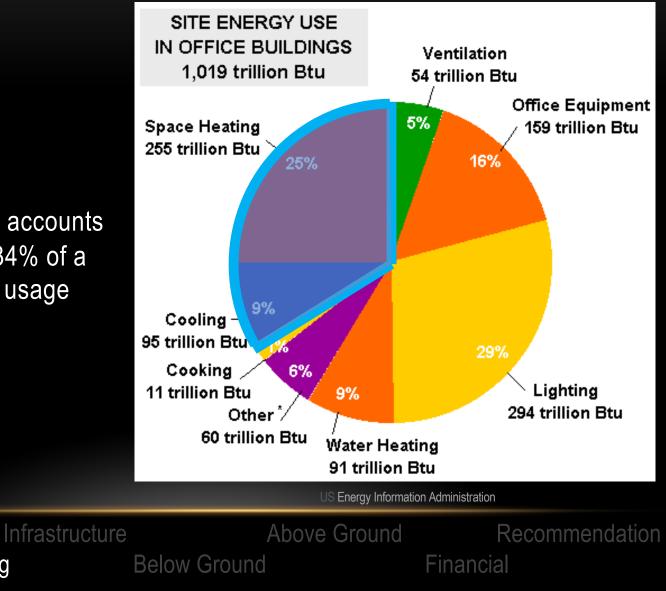
- LEED = Leadership in Energy and Environmental Design
- Aiming for LEED silver rating, according to Henry DeVries
 - Requires 50-59 points out of possible 110 points



LEED POINT CATEGORIES

- 6 categories
 - Sustainable Sites
 - Water Efficiency
 - Energy and Atmosphere
 - Materials and Resources
 - Indoor Environmental Quality
 - Innovation in Design

LEED Core Concepts and Strategies Online Couse



ENERGY CONSUMPTION BREAKDOWN

Heating and Cooling accounts for approximately 34% of a building's energy usage

Energy Modeling

Introduction

ON-SITE RENEWABLE ENERGY LEED POINTS

Percentage Renewable Energy	Points
1%	1
3%	2
5%	3
7%	4
9%	5
11%	6
13%	7
From LEED 2009 for New Constructions and Major Renova	tions

FIGHT LEED 2009 TOT NEW COnstructions and Major Re

Introduction

n Infrastructure Energy Modeling

Above Ground Below Ground

Recommendation Financial

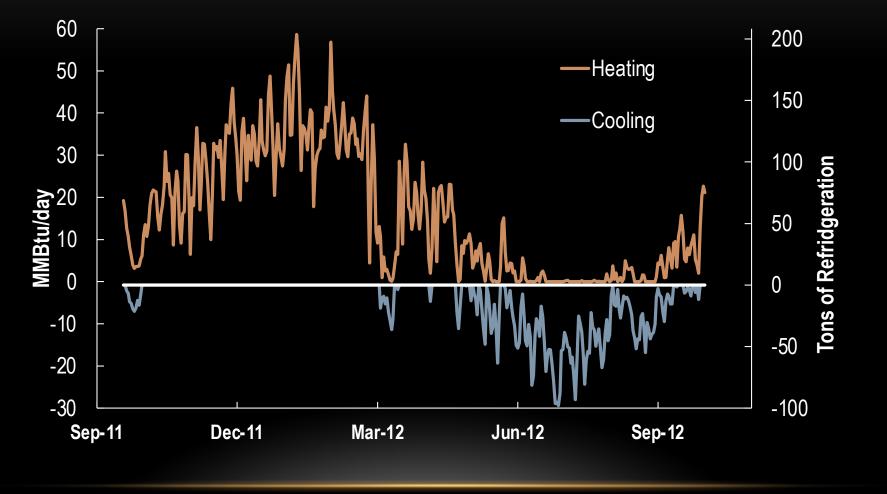
IMPORTANCE OF HEATING/COOLING LOADS

- "Load" is the heat that must be removed in the summer and added in the winter.
- Prevent oversized/undersized HVAC system
- Directly affect the progress of other teams.

CALCULATION METHOD

Started with calculations from KHvR geothermal suite

kaduad (hord/14/2012)110003. T120222.22.13. PM Page 1 103 Yan 0.753 d'000 Per saundylig skolariu ani basilg in the Catio Calago Explorating Carol Rapids. M 22 M val Ming Popel - Nacional Healing Land Columbian" A Venderlana and Rain Caproph of the Dongs Matching Grays "Jose Colum 1992 States Datas - San Venderlahlan, Carlon Manue, Columbia Destech leating Load of a suite in the KH residence hall addition Statement Statement All Statements (Statement All Statements) The purpose of this worksheet is to calculated the heating load of a first floor suite in the Residence Hall ddition to Kalsbeek/Huizenga Hall of Calvin College." **1* At and and and a first property in the second secon 008.00N DECISION IN PAGE 2 _HEAT LOSS THROUGH EXTERIOR WALL_" SQL Mg ("Front and "and state" load and "Proce and load activity" load, and "Proceeding" of conf. "Proceeding and load protocilland and "Proceeding", "Proceeding, Spring and Proceeding, Spring emperatures* _i = convertemp(F,R,72[F]) "inside room temperature" And a second second 7.12079 and perfect 1.0071 and And perfect 1.0071 and And perfect 1.0071 and _o = convertemp(F,R,0[F]) _inf = convertemp(F,R,0[F]) ansfer" "outside ambient temperature" "temperature at 'infinity' for radiation heat (hr,tons) "this and bid - T and problem?) here bid - T has problem? Transfer a state to Per Perge 3 Ing Grand Rappin. MI _wallframe = ((31+10/12)*8)[ft^2] _wall = A_wallframe - A_window _window = (6*4)[ft^2] 0.1.201 representation for Otherschilder in Daniel Republic - From Laker, Pyres, Daniel Ingenetisce al Telletic for confestion from hereafter" Contracts to Perform Thermal resistances of outer wall" "2" _facebrick = 0.45[ft^2-hr-F/BTU] "exterier face brick" Constructions from the descent process and the "It is interesting for a model as String production, and a Parallelium ratio, and a valuation, and _foam = 12[ft^2-hr-F/BTU] _CMUbrick = 1.11[ft^2-hr-F/BTU] _window = .9[ft^2-hr-F/BTU] "2 inch rigid foam insulation" "8 inch C.M.U. brick" "double pained air gap with .75in air gap" "outside air" y.htm#Misc" "Mone" (i.e., and the second of SQL (i.e., and the 152 _oair = 0.25[ft^2-hr-F/BTU] _iair = 0.25[ft^2-hr-F/BTU] inside air _wall_tot = R_oair+R_facebrick+R_foam+R_CMUbrick+R_jair _window_tot = R_oair+R_window+R_jair mining - (11) and The set of adiation heat transfer" [mol] ð 22 Contractions of the state of th 100 Contactive Instituteder" a del specific (Louis I. 11) and contaction G. del[1-1, and q. del specific constitution (and 152 a barren andalako ak a det auneffin (1 attellar 1 (11 attellar unstaden G. daffin A. attellar a dat auneffinanzariffit Unione 41200 intal heat transfer" "4 a del specific (Louis Loff) and and also Lot heat outpet of the second se _OUTSIDE AIR LOADS_" [dot_outsidealinads = -000[BTUIhr] "total heat transfer from outside air loads" were considering this to be negligable since the air will be contained in the entryway and lobby of the aliding" C 4012- Q 44 mpths (110-505-0) where the barry of loss part of " SON" are will be C ANTE: C AN LATER TO -T114-9 P4-0 OCCUPANT LOADS _dot_person = 411[BTU/hr] 100 Å . 8.11 .1509 .1530 .1530 .1530 _oair=0.25 [ft^2-hr-F/BTU] wall_tot=14.06 [ft^2-hr-F/BTU] window=0.9 [ft^2-hr-F/BTU] _window_tot=1.4 [ft^2-hr-F/BTU] gma=1.712E-09 [BTU/hr-ft^2-R^4] date _i=531.7 [R] inf=459.7 [R] ----Above Ground Recommendation Infrastructure Introduction


Energy Modeling

Below Ground

Financial

Made additions

DAILY HEATING & COOLING REQUIREMENTS

IntroductionInfrastructureAbove GroundREnergy ModelingBelow GroundFinancial

Recommendation

HEATING & COOLING LOADS BEST ESTIMATE

- Heating: 174 Tons
- Cooling: 86 Tons
- Tons are a standard unit of heating and cooling: 1 ton = 12,000 Btu/hr

FINAL ANSWERS

• How will a geothermal system contribute to achieving LEED certification?

Above Ground

Recommendation

Financial

• 7 points towards the goal of 50

Infrastructure

Energy Modeling Below Ground

- What are the heating & cooling loads for the West Wing addition?
 - Heating: 174 Tons
 - Cooling: 86 Tons

Introduction

INFRASTRUCTURE

Introduction

Infrastructure

Above Ground

Recommendation Financial

Energy Modeling

Below Ground

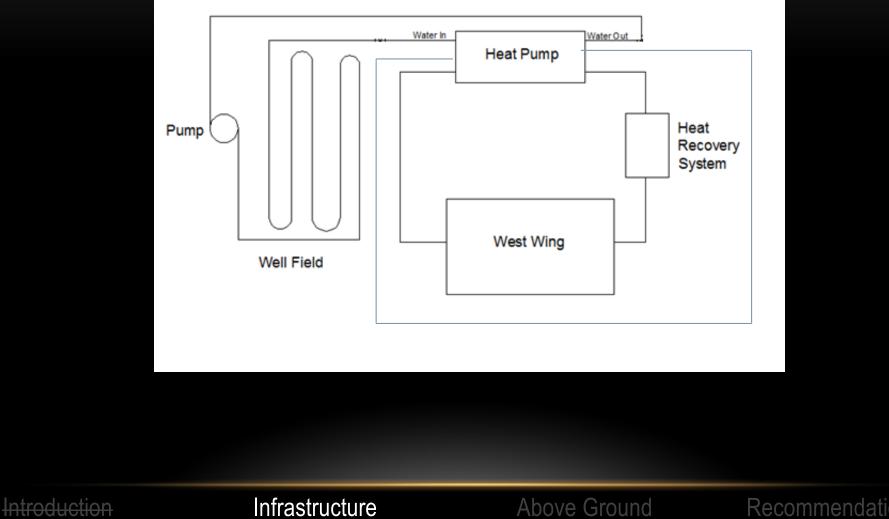
TEAM MEMBERS

Introduction

m Infrastructure Energy Modeling

Below Ground

Above Ground

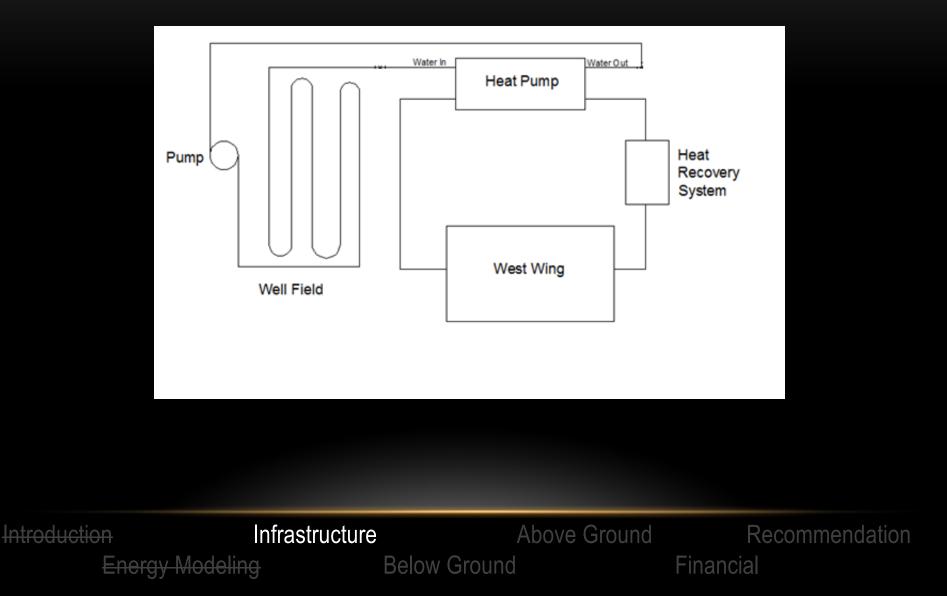

Recommendation Financial

KEY QUESTIONS

- How will the geothermal system fit in at Calvin College?
- What type of loop configuration will be used?
- Where will the geothermal ground loop be located?

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

INTEGRATED SYSTEM



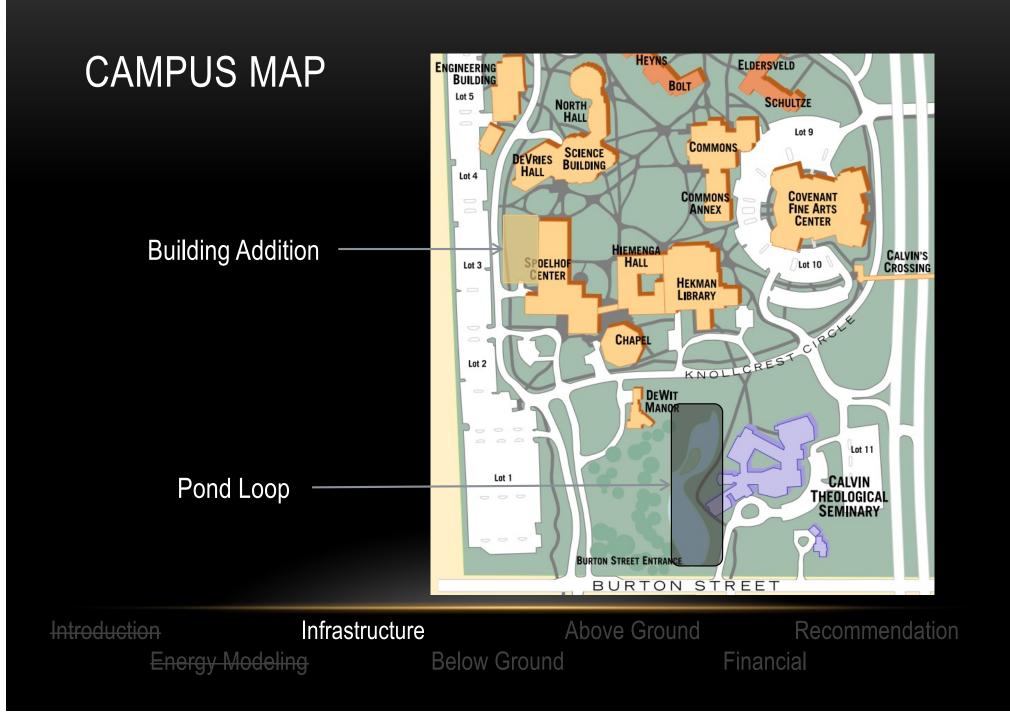
Energy Modeling

Below Ground

Recommendation Financial

STAND ALONE SYSTEM

POND LOOP


http://www.fhp-mfg.com/files/images/common/coupCx03.jpg

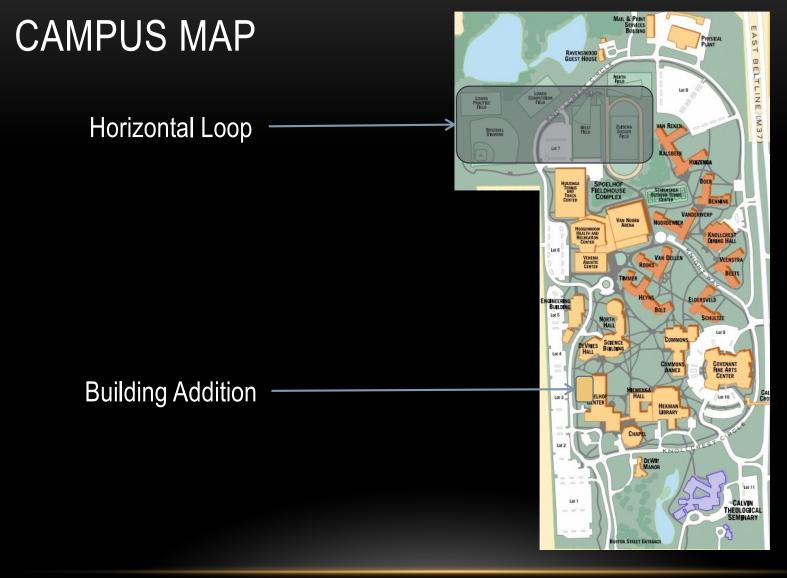
Introduction

m Infrastructure Energy Modeling

Above Ground Below Ground

Recommendation Financial

HORIZONTAL LOOP



http://www.fhp-mfg.com/files/images/common/coupCx02.jpg

Introduction

m Infrastructure Energy Modeling

Above Ground Below Ground Recommendation Financial

Introduction

Infrastructure

Energy Modeling

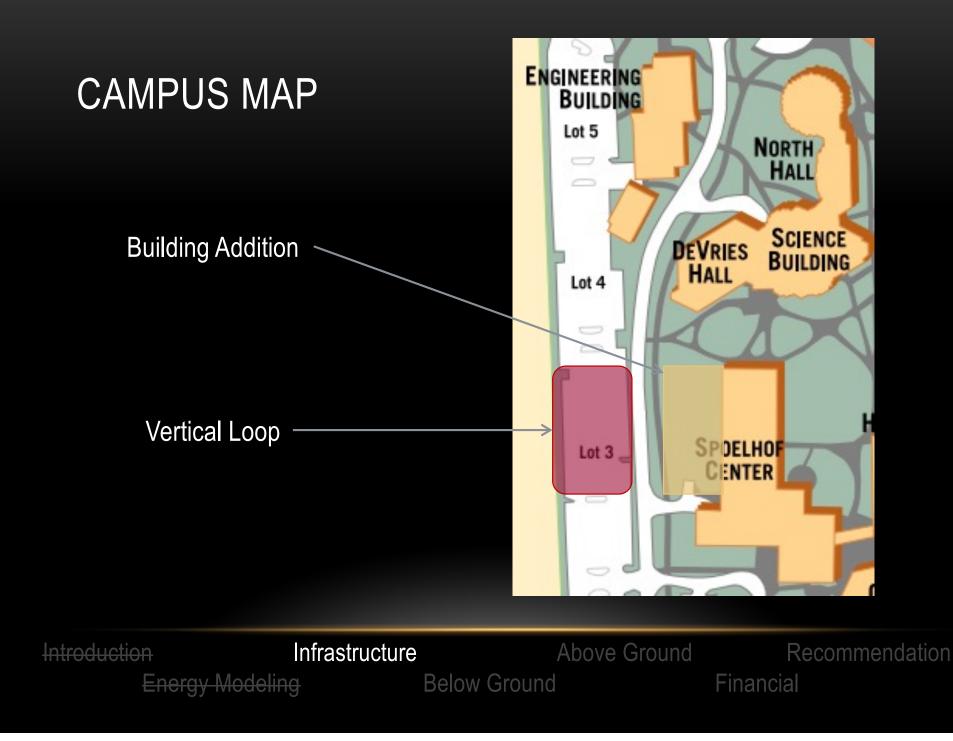
Below Ground

Above Ground

Recommendation Financial

VERTICAL LOOP

http://www.fhp-mfg.com/files/images/common/coupCx01.jpg


Introduction

Infrastructure

Above Ground Below Ground

Recommendation Financial

Energy Modeling

ANSWERS

- How will the geothermal system fit in at Calvin College?
 - Mechanical Separation
- What type of loop configuration will be used?
 - Vertical
- Where will the geothermal ground loop be located?
 - West Parking Lot

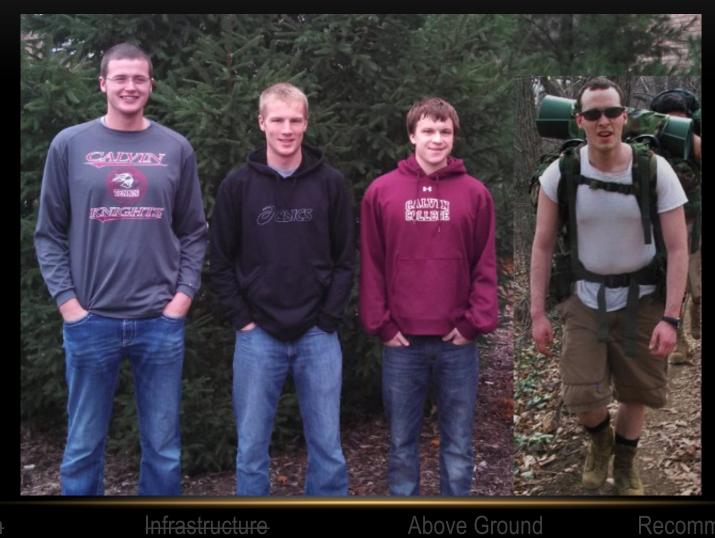
IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

BELOW GROUND

Introduction

Infrastructure

Above Ground


Recommendation Financial

Energy Modeling

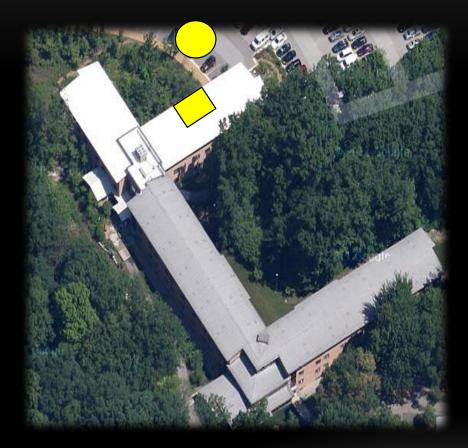
Below Ground

TEAM MEMBERS

Energy Modeling


Infrastructure

Below Ground


Recommendation Financial

KEY QUESTIONS

- What is the Design of the Borefield?
 - How many bores?
 - How deep?
 - How far apart?
 - Will local geology affect the design?
 - How much will it cost?
 - How long will it last?

KHVR GEOTHERMAL INSTALLATION

https://maps.google.com/maps?q=calvin+college&aq=f&sugexp=chrome,mod%3D0&um=1&ie=UTF-8&hl=en&sa=N&tab=wl

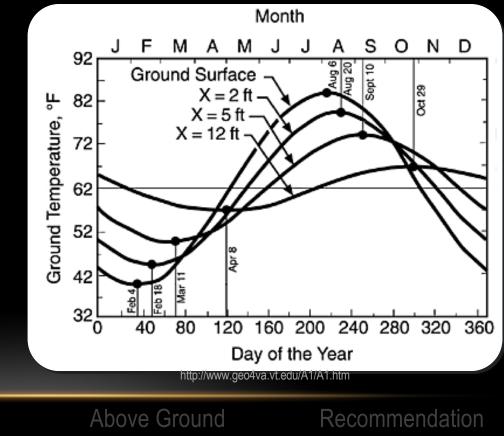
Energy Modeling

Cleanly Cooling Calvin (Senior Design 2008)

Introduction

Infrastructure

Above Ground


Below Ground

Recommendation Financial

THERMAL MODELING - INITIAL

Infrastructure

- Factors to account for:
 - Temperature Gradient vs. Constant Ground Temperature
 - Soil Composition/Location

Energy Modeling

Introduction

Below Ground

Financial

THERMAL MODELING - INITIAL SUMMARY

- Heating Load: 140 ton
- Borehole Depth: 300 420 feet
- Number of Boreholes: 175 200

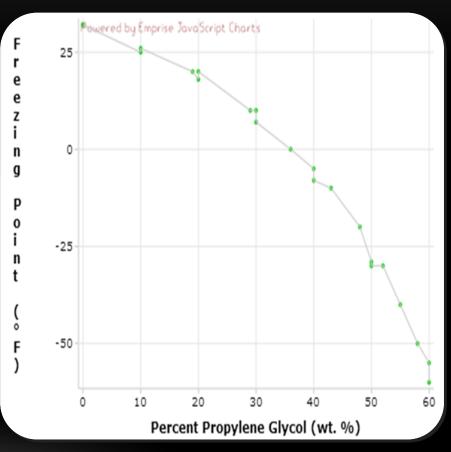
REFINED BOREFIELD DESIGN

http://mwgeothermal.com/

Introduction

Infrastructure

Above Ground


Energy Modeling

Below Ground

Recommendation Financial

REFINED BOREFIELD DESIGN

- Thermal Conductivity: 1.35 Btu/hr-ft-°F
- Operating Fluid: Water/Glycol Mix
- Bore Feet needed to accommodate loads
 - 28,447 feet
- Effective Bore Feet
 - 33,180 feet

http://www.xydatasource.com/xy-showdatasetpage.php?datasetcode=234654&dsid=67

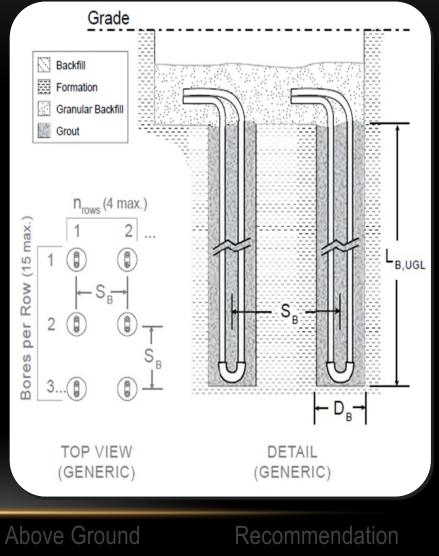
n Infrastructure Energy Modeling

Below Ground

Above Ground

Recommendation Financial

PROPOSAL


- What is the Design of the Borefield?
 - How many bores?
 - 88 bore holes
 - How deep?
 - 400 feet deep (L_B)
 - How far apart?
 - 20 feet center-to-center (S_B)

Infrastructure

• Additional Details:

Introduction

- 5 inch bores (D_B)
- 1.25 inch HDPE pipe

Energy Modeling

Below Ground

Financial

REFINED BOREFIELD DESIGN

- How must will it cost?
 - Total Installation Costs = **\$478,720**
 - \$13.60/bore feet
 - Pipe Costs
 - Site Costs
- How long will it last?
 - Economic Life
 - 50 years

ABOVE GROUND

TEAM MEMBERS

Introduction

n Infrastructure Energy Modeling

Below Ground

Above Ground

Recommendation Financial

KEY QUESTIONS

- What system should be selected to meet the HVAC demands of the new addition?
 - Water to Air vs Water to Water?
 - Centralized vs Distributed System?
 - Energy Recovery Ventilation?

SYSTEM REQUIREMENTS

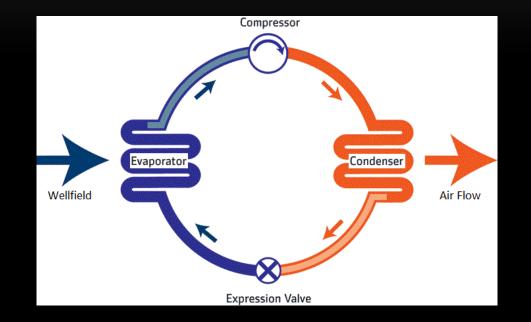
- Heating/Cooling Loads
 - Heating Load: 174 Tons
 - Cooling Load: 86 Tons
- Ventilation Requirements
 - Estimated Air Flow Required: 48,000 cfm
 - Michigan Mechanical Codes/ASHRAE Standards

Application	Estimated Maximum Occupancy (people/1000 ft ²)	Outdoor Air Requirements		
		cfm/person	cfm/ft ²	
Offices				
Office space	7	20		
Reception areas	60	15		
Telecommunication centers and data entry areas	60	20		
Conference rooms	20	20		

Introduction

Infrastructure

Above Ground


Energy Modeling

Below Ground

Financial

Recommendation

WATER TO AIR vs WATER TO WATER SYSTEMS

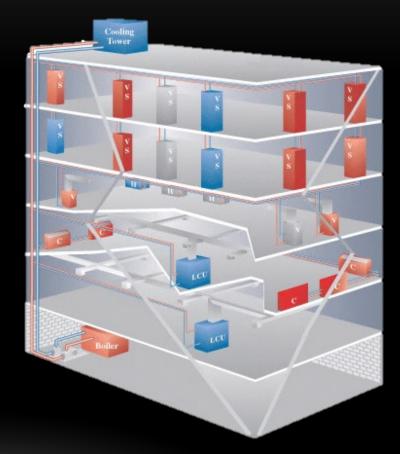
- Ventilation System
- Lower Cost

WATER TO AIR vs WATER TO WATER SYSTEMS

- Ventilation System
- Lower Cost

- Air Handlers and Radiators
- Higher Cost

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial


CENTRALIZED vs DISTRIBUTED SYSTEMS

http://csmdetroit.com/yahoo_site_admin/assets/images/3200_8.345123502_large.jpg

http://4mechanical.com/wp-content/uploads/2011/09/Ductwork1.jpg

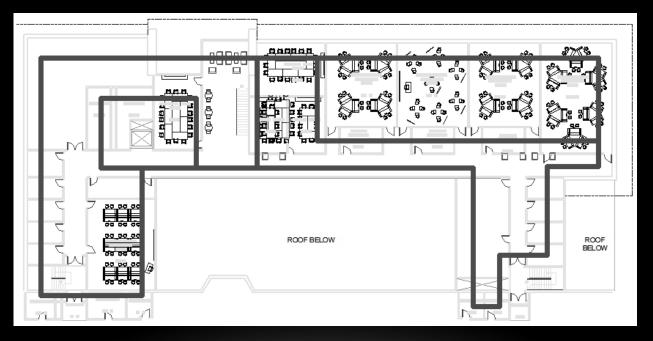
http://www.geo4va.vt.edu/A3/A3.htm

Above Ground

Introduction

n Infrastructure Energy Modeling

Below Ground


Recommendation Financial

HEAT PUMP SELECTION

DUCTWORK

- Estimated Length of Ducts Required: 5800ft
 - Cost of Installation and Purchase: \$54,000

Ductwork diagram (third floor)

ENERGY RECOVERY VENTILATION (ERV)

- Ventilation unit that preheats or precools incoming air using exiting air streams
 - Increases efficiency of the system by roughly 20%
 - Additional cost: \$400,000

http://www.renewaire.com/index.php/products/commercial-products/he8xrt

Above Ground

Introduction

n Infrastructure Energy Modeling

Below Ground

Recommendation Financial

RECOMMENDATION

- Centralized, Water to Air System
- 175 Ton rooftop heat pump (Trane)
- Energy Recovery Ventilation System
- Total Cost: \$1,300,000

Introduction

n Infrastructure Energy Modeling

Below Ground

Above Ground

Recommendation Financial

FINANCIAL GROUP

TEAM MEMBERS

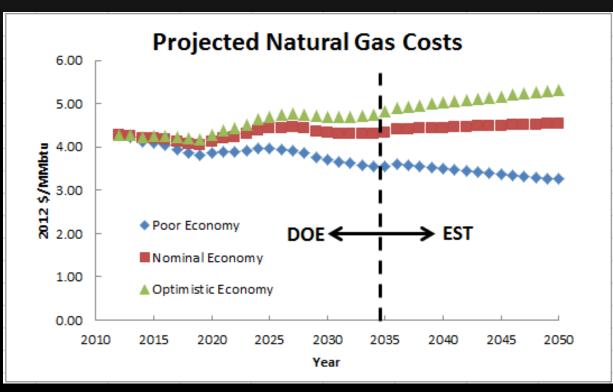
Introduction

Infrastructure

Above Ground


Recommendation Financial

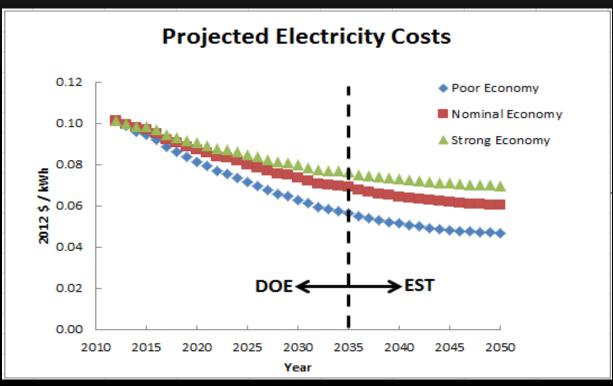
Energy Modeling


Below Ground

KEY QUESTION

Is a geothermal system a financially viable option for the West Wing addition?

NATURAL GAS PRICES



http://www.eia.gov/forecasts/archive/aeo11/source_natural_gas.cfm

- 2012-2035: Data from Department of Energy
- 2035- : Data projected based on best-fit trends

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

ELECTRICITY PRICES

http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2012&subject=0-AEO2012&table=8-AEO2012®ion=0-0&cases=ref2012-d020112

- 2012-2035: Data from Department of Energy
- 2035- : Data projected based on best-fit trends

IntroductionInfrastructureAbove GroundRecommendationEnergy ModelingBelow GroundFinancial

INITIAL COSTS

Geothermal S	ystem					
Initial Costs		Conventional HVAC System				
Borefield Cost	\$	478,720	Initial Co	osts		
Piping/Pumps Cost	\$	10,000	Ductwork Cost	1	\$	53,806
Heat Pump Cost	\$	1,240,000	Air Handler Cost		\$	150,000
Total Cost	\$	1,728,720	Total Cost	(S	203,806

Introduction

Infrastructure

Above Ground

Recommendation

Energy Modeling

Below Ground

Financial

ENERGY COSTS

• GEOTHERMAL

- Based on Heating/Cooling Loads and pump usage
- Total Energy Required: 562,040 (kWh/yr)

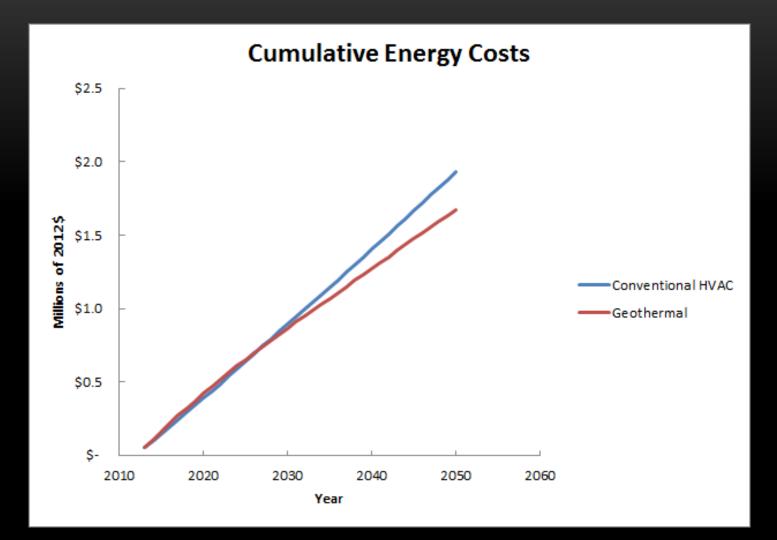
- CONVENTIONAL HVAC
 - Heating Load: 7,316 (MMBtu/yr)
 - Cooling Load: 143,808 (kWh/yr)
 - Total Energy Required: 2,288,350 (kWh/yr)

Geothermal Heating COP	3.68
Geothermal Cooling EER	21.39

Conventional HVAC Heating Eff.	80%
Conventional HVAC Cooling EER	10

http://www.duke-energy.com/pdfs/110371-HVAC-Whitepaper.pdf

Introduction


Infrastructure

Above Ground

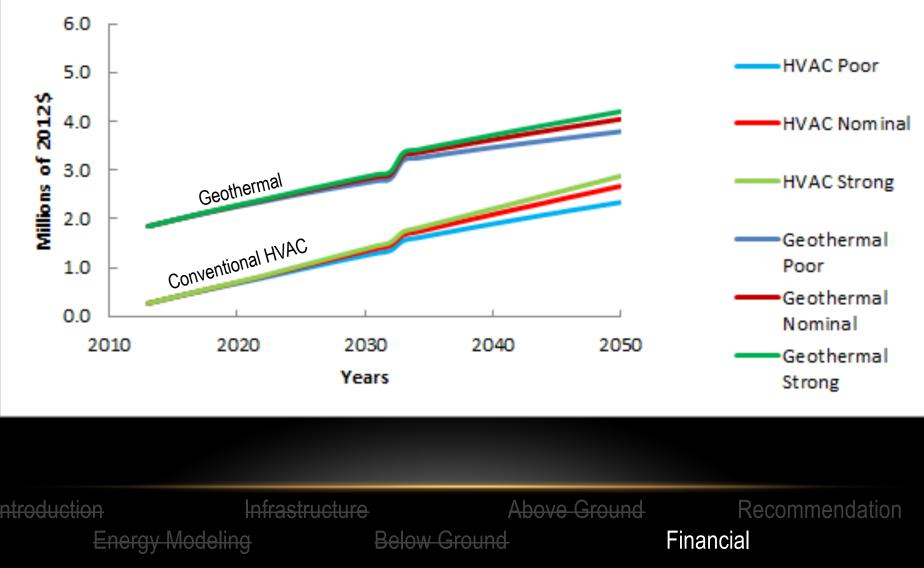
Energy Modeling

Below Ground

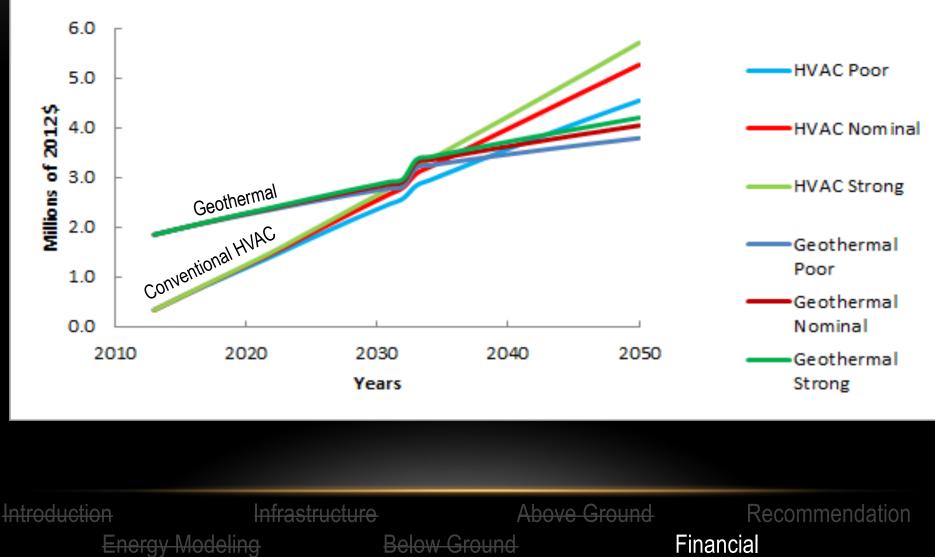
Recommendation Financial

(optimistic economic conditions)

MAINTENANCE COSTS


- GEOTHERMAL
 - \$9,000 per year (ASHRAE)
 - Heat Pump replacement after 20 yrs.
- CONVENTIONAL HVAC
 - \$15,000 per year
 - Air Handler replacement after 20 yrs.

Annual Maintenance (\$/yr)	9000	Annual Maintenance (\$/yr)	15000
Later Maintenance (\$/yr)	13500	Later Maintenance (\$/yr)	22500
Heat Pump Replacement Cost (\$)	336000	Air Handler Replacement Cost (\$)	150000


Later Maintenance: costs increase by 50% after 10 yrs.

Cumulative Costs

Cumulative Costs (High Natural Gas Prices)

FINANCIAL PROPOSAL

- As Christians, we have a calling to be stewards of Creation and Money (Luke 14:28-30, 1 Corinthians 4:7)
- There is no foreseeable financial payback
- From a solely financial standpoint, the financial group recommends a geothermal system not be constructed until such time as:
 - Natural gas prices rise dramatically
 - Entire campus considered

FINAL RECOMMENDATION – ENGR. 333 CLASS

Geothermal Advantages

- Reduce energy costs
- Lower maintenance costs
- Promotes stewardship of creation
- Contributes to LEED certification
- Small scale example of possible campus wide geothermal
- Enhancement of college image

Proposal: Utilize existing HVAC system

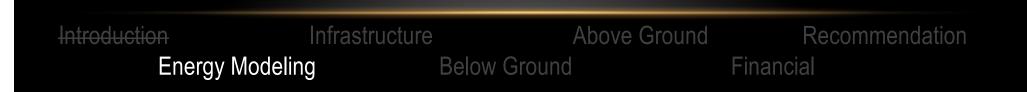
Geothermal Disadvantages

- High initial cost
- Additional construction site well field
 - Coordinate with parking lot construction

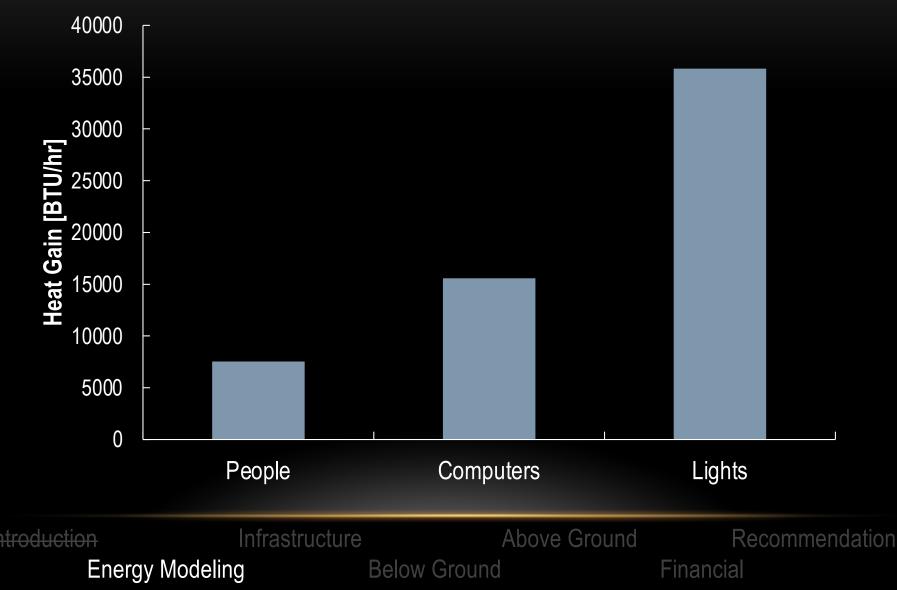
ACKNOWLEDGEMENTS

Class Advisors

- Trent DeBoer
- Henry DeVries
- Professor Heun
- Paul Pennock


Additional Help

- Phil Beezhold
- Scott Skoog & Kortney Lull, Midwest Geothermal
- Dan Pabst
- Dean Anderson
- Dan Slager


QUESTIONS

HEAT GAINS

- Several factors also provide heat gain to a building
 - Occupants (1 person produces around 400 BTU/day)
 - Equipment in rooms (computers, projectors, etc)
 - Lighting

Heat Gains

EXTERNAL FUNDING

- Direct external funding (tax refunds/incentives) are unavailable as Calvin College is a tax-exempt entity
- However, according to Scott Skoog of Midwest Geothermal, indirect incentives are a possibility.
- In this case, an architect/engineering firm can apply for a tax deduction for designing or building an energy saving building for a non-profit or government agency.
- In this way, the firm saves money on designing/building Calvin's geothermal, and partially passes these savings on to Calvin.

CALVIN ENERGY RECOVERY FUND (CERF) UTILIZATION

- CERF is a revolving fund used to improve energy efficiency and decrease carbon emissions.
- CERF is currently growing by investing in smaller scale projects (lighting, computer shutdown)
- The scale of this project vs. CERF's budget (~\$65,000) seems to be a bad fit.
- Recommendation: Don't utilize CERF in this project