An Analysis of Calvin's Heating System in the Pursuit of Carbon Neutrality

Jordan Tuter, Aidan Bakker, Samuel Hoover, Jessica Camp and the Engineering 333 Class of 2022

Carbon Neutrality

In 2017 President Michael K. Leroy signed sustainability commitment act...

Carbon Neutrality

President Leroy to President Boer -Talk about sun funded/other steps

Who We Are

Section A

Section B

- Jess Camp & Sam Hoover: Section A
- Jordan Tuter & Aidan Bakker: Section B

Our Research Question:

What would it take to eliminate Calvin's natural gas-related net CO₂ emissions from Heating?

Key Concept: Hero Graphs

Hero Graph

*graph does not account for embodied carbon from new construction destruction projects in either data set

Hero Graph

*graph does not account for embodied carbon from new construction or destruction projects in either data set

Existing Systems

<u>Key</u>

RED – Main Heating Loop BLUE – Upper Heating Loop

Existing Systems

- Who has their windows open during the day because the dorm is too hot?
- YOU ARE THE PROBLEM
- Not really, but this is a problem

Boiler Efficiency Timeline

Age (years)	Energy Efficiency %
25+	60-70
20	75
15	80-85
<10	80-85

Existing Systems

Strategy

- Reduce heating load with efficiency improvements
- Shift heating systems from natural gas to electricity
 - Reduces CO₂ emissions drastically by itself
- Implementing Carbon Free Electricity

Heating Loads - Overview

Material	R/ Inch	R/ Thick- ness
Insulation Materials		
Fiberglass Batt	3.1.4	
Fiberglass Blown (attic)	2.20	
Fiberglass Blown (wall)	3.20	
Rock Wool Batt	3.1.4	
Rock Wool Blown (attic)	3.10	
Rock Wool Blown (wall)	3.03	
Cellulose Blown (attic)	3.13	
Cellulose Blown (wall)	3.70	
Vermiculite	2.13	
Air-entrained Concrete	3.90	
Urea terpolymer foam	4.48	
Rigid fiberglass (> 4 lb/ft ³)	4.00	
Expanded Polystyrene (bead- board)	4.00	
Extruded Polystyrene	5.00	
Polyurethane (foamed-in-place)	6.25	
Polyisocyanurate (foil-faced)	7.20	
Construction Materials		
Concrete Block 4 inch		0.80
Concrete Block 8 inch		1.11
Concrete Block 12 inch	2	1.28
Brick 4 inch common		0.80
Brick 4 inch face		0.44

- Thermal Resistance Networks
 - Main Loop
 - Upper Loop
 - Residence Areas
 - Miscellaneous Buildings
- Assumptions and Data Collection

New Building Heating Loads

Stadiums (2025): 6000 [MMBtu] Commons Union (2027): 0 [MMBtu] New Apartment Building (2031): 1000 [MMBtu]

Heating Loads - Application

Total Heating Allocation Breakdown

Efficiencies – Dorm Windows

- Double Pane Windows
- 2.7% Heating Load Reduction

Thermostatic Valves

• 1% Heating Load Reduction

Energy Recovery Systems

20% Heating Load Reduction

Main Heating Loop

Ground Source Heat Pumps

What are Bore Holes and why do we need them?

Main Loop Bore Field

Solution #1

<u>Key</u>

RED – Main Heating Loop BLUE – Upper Heating Loop PURPLE – Facilities ORANGE – KE Apartments BLACK – Off Campus Housing

Other Bore Field Locations

Upper Heating Loop: Lot 8

Facilities and Campus Safety: Lot 8

KE Apartments: Lot 17

Off Campus Housing: Backyards/Front Yards

Solution #2

Upper Heating Loop: Console Heat Pumps

Everything Else: Air Source Heat Pumps Facilities and Campus Safety KE Apartments Off Campus Housing

Console Heat Pumps

Upper Heating Loop

Air Source Heat Pump

Add ducts to buildings as needed

Another Consideration -Renewable Natural Gas

Animal Type	MMBtu/Animal/Year	# Animals Needed for Calvin Need	
Dairy Cow	48.55	2,904	
Beef Cow	40.59	3,474	
Swine	15.68	8,991	
Poultry	2.25	62,761	
Energy Crop	MMBtu/ton, dry	Tons of Crop Needed	
Willow	17.1	8,246	
Poplar	15.55	9,068	
Switchgrass	15.86	8,890	
Miscanthus	15.8	8,924	
Biomass sorghum	14.48	9,738	
Pine	12.42	11,353	
Eucalyptus	12.37	11,399	
Energy Cane	15.8	8,924	
Forest Residue	17.19	8,202	
Forest Thinnings	18.05	7,812	
Primary/Secondary residue	17.19	8,202	
Mixed Wood	13	10,846	
Landfill	MMBtu/day	Tons of Landfill Needed	
	386	1,788,432	

Renewable Natural Gas

Source	Forestry	Landfill	Waste Water	Livestock
Theoretical Supply [MMBtu/day]	3.158	0.590	0.045	0
Still Needed [MMBtu/day]	382.842	385.410	385.955	386.000

HOMEBIOGAS Commercial System

- Anaerobic Process
- Small size (2 cars Approx.)
- Food Capacity: [2200 lb./day]
- Biogas production: 96 [m³/day]

Annual Carbon Emissions Associated with Heating without Consumers Energy's Carbon Neutral Promise

Bring Carbon Down to Zero

Sun FundED

Consumer Energy

Immediate Action!

Valves Bore Hole Data

Cumulative Maintenance and Installation Expenses Since 2020

Cumulative Operating Expenses Since 2020

Full Circle, What Would it Take?

- Carbon Neutral by 2040
- Total Capital Investment: \$31.33 Million
- Estimated Annual Cost
 - Crossover: 2067

Acknowledgements

Acknowledgements

- Professor Heun
- President Boer
- Tim Fennema
- Trent DeBoer
- Nate Van Heukelum
- Nick Thompson
- Professor Leonard De Rooy
- Mark Luehmann
- Patrick Poer

Thanks to all the hard work from our classes! We put in over ~1500 hours collectively!